Conduction, Convection, and Radiation Analyses
The Heat Transfer Module can be used to study the three types of heat transfer in detail, expanding the analyses that are possible with the core COMSOL Multiphysics® simulation platform become aruba certified design expert.
Conduction
To describe conduction that occurs in any material, you can define the thermal conductivity as isotropic or anisotropic, and it may be constant or a function of temperature (or any other model variable).
Convection
Account for the motion of fluids in heat transfer simulations. You can use features for modeling pressure work; viscous dissipation; as well as forced and free (or natural) convection. Natural convection is automatically modeled when the gravity option is selected in the Single-Phase Flow interface.
Radiation
The Heat Transfer Module enables you to model surface-to-surface radiation using the radiosity method as well as radiation in participating media using the Rosseland approximation, P1 approximation or discrete ordinate method (DOM). The P1 approximation and DOM are also available for radiation in absorbing and scattering media, to model light diffusion in a nonemitting medium, for example. You can also model a radiative beam in absorbing media radiation using the Beer-Lambert law and couple the effect with other forms of heat transfer.
Temperature and velocity in an LED bulb
What You Can Model with the Heat Transfer Module
Whether heat transfer is the primary area of focus or part of a larger, complex analysis, you most likely need to examine multiple physical effects at once. With the multiphysics modeling capabilities of the COMSOL® software, you are able to perform complete and thorough analyses in one simulation environment, following a consistent workflow across physics. This intuitive approach to modeling and simulation can be used to account for heat transfer and all of the physical phenomena involved in your application.
Browse the following applications to see a small sample of what you can analyze and simulate with COMSOL Multiphysics® and the Heat Transfer Module.