Wednesday, 17 February 2021

Two Major Functions of VLANs

Each virtual switch, or VLAN, is simply a number assigned to each switch port. For example, the two switch ports in the red mini-switch might be assigned to VLAN #10. The two ports in the orange mini-switch might be assigned to VLAN #20. And lastly the two switch ports in the blue mini-switch might be assigned to VLAN #30.

If a port is not explicitly assigned a VLAN number, it resides in the default VLAN, which has a VLAN number of 1.

Traffic arriving on a switch port assigned to VLAN #10 will only ever be forwarded out another switch port that belongs to VLAN #10 – a switch will never allow traffic to cross a VLAN boundary. Again, each VLAN operates as if it were a completely separate physical switch.

In the first illustration, traffic from the red switch cannot magically appear on the orange switch without first passing through a router. Similarly, in the second illustration, traffic in VLAN #10 cannot magically appear on VLAN #20 without also passing through a router.

Each of the VLANs also maintain their own, independent, MAC address table. If Host A sends a frame with a destination MAC address of Host B, that frame would still be flooded solely within the switch ports in VLAN #10.

Ultimately, assigning different ports to different VLANs allows you to re-use a single physical switch for multiple purposes. This is the first major function of a VLAN.

But that isn’t all VLANs allow you to do. The second major function is VLANs allow you to extend the smaller Virtual switches across multiple Physical switches.

Extending Virtual Switches across multiple Physical Switches

To illustrate this point, we will expand the topology above with an additional physical switch and two additional hosts: cisco voip certification

Notice how a VLAN# 10 and VLAN# 30 have been extended onto a second switch. This enables Host A and Host C to exist in the same VLAN, despite being connected to different physical switches located in potentially different areas.

The primary benefit of extending a VLAN to different physical switches is that the Layer 2 topology no longer has to be tied to the Physical Topology. A single VLAN can span across multiple rooms, floors, or office buildings.

Each connected switch port in the topology above is a member of only a single VLAN. This is referred to as an Access port. An Access port is a switch port that is a member of only one VLAN.

When configuring a port as an Access port, the administrator also designates the VLAN number that port is a member of. Whenever the switch receives any traffic on an Access port, it accepts the traffic onto the configured VLAN.

In order to extend a VLAN to the second switch, a connection is made between one Access port on both switches for each VLAN. While functional, this strategy does not scale. Imagine if our topology was using ten VLANs, on a 24 port switch nearly half of the ports would be taken up by the inter-switch links.

Instead, there is a mechanism which allows a single switch port to carry traffic from multiple VLANs. This is referred to as a Trunk port. A Trunk port is a switch port that carries traffic for multiple VLANs.

vlans-trunks-and-accessWe can use Trunk ports to reduce the amount of switch ports required for the topology above. This enables us to leave more ports available to add hosts to the network in the future.

This physical topology operates (logically) identically to the illustration above it, but requires far fewer switch ports.

We were able to use a total of four Trunk ports (across both switches) to replace eight different Access ports in the prior illustration.

Typically, switch ports connected to end-host devices are configured as Access ports (e.g., workstations, printers, servers). Conversely, switch ports connected to other network devices are configured as Trunk ports (e.g., other switches, routers). We will uncover the reason for this later in this article.

1 comment:

  1. The ENT department at Shalamar Hospital provides comprehensive care for ear, nose, and throat disorders, utilizing advanced diagnostic and treatment techniques.

    ReplyDelete

What You Can Model with the Heat Transfer Module

Conduction, Convection, and Radiation Analyses The Heat Transfer Module can be used to study the three types of heat transfer in detail, exp...